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I.    INTRODUCTION 

 

When a digital filter is implemented on a digital computer 

or on special-purpose digital hardware, the filter 

coefficients are stored in binary registers. These registers 

can accommodate only a finite number of bits and hence 

the filter coefficients have to be truncated or rounded-off 

in order to fit into these register. Whether the 

computations are performed in fixed-point or floating-

point arithmetic is another consideration. All these 

problems are usually called finite –word-length effect and 

results in degradation of system performance. 

The finite-word length in recursive digital filter produces 

non-linearities, namely quantization and overflow. The 

presence of such non-linearities may result in the 

instability of the designed system. The zero input limit 

cycle, which are undesirable, may possibly occur due to 

such non-linearities. The quantization and overflow non-

linearities may interact with each other. However, if total 

number of quantization steps is large or, in other words, 

the internal wordlength is sufficiently long, then the effect 

of these non-linearities can be regarded as decoupled or no 

interacting and can be investigated separately. Under this 

decoupling approximation, quantization effects may be 

neglected when studying the effect of overflow. The 

problem concerning the elimination of overflow 

oscillation in fixed-point state-space digital filter 

employing saturation arithmetic is considered here. 

 

II.  SATURATION ARITHMETIC IN DIGITAL 

FILTER AND SYSTEM DESCRIPTION 

 

The digital filter is described by the state space model 

implemented in fixed-point arithmetic as 

 

x(r+1) = f(y(r)) = [f1(y1(r))   f2(y2(r))......fn(yn(r))]
T
        (1a) 

 

y(r) = [y1(r)    y2(r)   ................yn(r)]
T 

= Ax(r),             (1b) 

 

where x(r) is an n-vector state, A = [ai j ] is the n × n 

coefficient matrix, and T denotes the transpose. The 

saturation nonlinearities given by 

 

  

fi yi r  =  

1                      yi r > 1

yi r               yi  r  ≤ 1

−1                  yi   r < −1  

                         (1c)  

 

i = 1, 2, . . . ,n, are under consideration. 

Eq(1) may be used to describe a class of discrete-time 

dynamical system with symmetric state saturation which 

include digital filters implemented in finite register length 

under zero external inputs, digital control system with 

saturation nonlinearities on the state, recurrent neural 

networks and many other engineering problem. 

The system to be studied in this paper is described by 

eq(1) and is used to describe digital filters with symmetric 

saturation implemented with finite register length under 

zero external inputs 

 

III. STABILITY CRITERIA FOR FIXED-POINT 

STATE-SPACE DIGITAL FILTERS WITH 

SATURATION ARITHMETIC 

 

A criterion for the global asymptotic stability of system (1) 

is reported by Liu.D and Michel.N [1].According to [1], 

the zero solution of system (1) is globally asymptotically 

stable if there exist a positive definite symmetric matrix 
nxn

ij
RpP  ][  satisfying 

 

0 PAAP
T

                                            (2a) 
 






n

ijj

ijii
pp

,1

||     i=1, 2…….n                              (2b) 

 

Where >0 denotes the matrix is positive definite 

Now define 






n

j

iji
ak

1

 i=1,2….n                                                (2c) 

 

And assume that the elements of matrix a satisfy 
 

1
i

k , i=1,2,………, m                                             (2d) 
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1
i

k , i=m+1,m+2,………n                             (2e) 

 

Pertaining to the global asymptotic stability of system 

described by (1), ref [2] brings out the following result. 

 

IV. THEOREM 1 

 

The zero solution of the system described by (1) is 

globally asymptotically stable if there exist a positive 

definite symmetric matrix nxn

ij
RpP  ][  satisfying 

 

0 PAAP
T                                                             (3a) 

 






n

ijj

ijii
pp

,1

|| , i=1,2,…………….m                        (3b) 

 

From ref [2], Theorem 1 presents a modified form of 

criterion due to Liu.D and Michel.N [1].Now with 

m=n,(3b) is same as (2b).For the situation where m≠n, 

(3b) is more relaxed than (2b). Therefore, in case where 

m≠n, (3b) is less stringent than (2b).A noticeably 

improved version of Theorem 1 is presented by Kar. H [3] 

by imposing less restriction on the elements of matrix P 

than (2b), and brings out the following result. 

 

V.  THEOREM 2 

 

The zero solution of the system described by (1) is 

globally asymptotically stable if there exist a positive 

definite symmetric matrix nn

ij
RpP


 ][ satisfying 

 

0 PAAP
T

                                                           (4a) 
 

 
 



m

jj

n

jmj

ijjijii
pkpp

1,1 1,1

|||| i=1,2,3,…m                    (4b) 

 

Theorem 2 is applicable to one combination of elements of 

the matrix A, i.e. where the elements of first m rows of A 

satisfy (2d) and those of the remaining (n-m) satisfy 

(2e).The result pertaining to other possible combinations 

of the elements of matrix A can be easily conceived. 

Condition (4) implies global asymptotic stability of the 

null solution, which assures not only the absence of limit 

cycle oscillations, but also elimination of any other kind of 

instability in the system under consideration 

The stability criterion of fixed-point state-space digital 

filters proposed by Ooba.T is improved from some of the 

earlier existing criteria [1]-[3].A linear algebra given by 

[7] broadens the scope of stability test. Pertaining to the 

global asymptotic stability of system described by (1), ref 

[7] brings out following result.  

 

VI. THEOREM 3 
 

The system described in (1) is asymptotically stable if 

there exists a positive definite matrix P satisfying 
 

     




ij

c

AjijAii
JiallforPwP

||,||,
0||

          

(5a) 

such that PAAP
T

   is positive definite. 

There are some prerequisite which are to be known before 

stating the algorithm to calculate 
|| A

w  for (5a), they are 

 

a) Stability test is to be done on matrix A, where 
nxn

RA  ,  

b) The order of the matrix A is n.  

c) The matrix ||
ij

aB  , i, j=1 2….n 

d) J0=ɸ   ; Jk contains coordinates indices 

e) n0 =0   ; nk contains the number of indices of Jk 

f) c

k
J  contains the complement indices of Jk 

g)  

                











































n

wRw
n

.

.

.

1

1

1

;1
00

 
 

VII. ALGORITHM  

 

The following procedure is proposed by ref [7] with k=1, 

to obtain ,
B

J
B

n and
n

B
Rw   

i. Let 
k

J  denotes the list of coordinate indices i’s 

satisfying   1
1


 ik

Bw ,and let 
k

n denotes the 

number of the indices in 
k

J ; 

ii. If 
1


kk

JJ , or if nn
k
 , then define 

kB
JJ  ,

kB
nn  ,and 

                 










nnif

nnifw
w

B

Bk

B

0

1
             (5b)  

 

 and then exit the loop; 

iii. Define 
n

k
Rw   such that 

   
 
















k
c

k

k
c

kkkk
kk

nnJk

nnJJJJnJk

Iw

IBBIw
,

1

,

                    

(5c) 

and return to step ( i ) with k=k+1. 

 

VIII. NUMERICAL EXAMPLE 

 

 To illustrate the algorithm for the stability test of fixed-

point state-space digital filter with saturation arithmetic, a 

specific example of a third-order digital filter is considered 

with 

























510

1511

05010

10

1
A

 
 

According to the prerequisite of the algorithm Order of the 

matrix A is 3 























510

1511

05010

10

1
B
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
0

J  

0
0
n  , and 























1

1

1

0
w

 
 

Iteration1 

Step (i) 

































































6.0

7.1

6

1

1

1

510

1511

05010

10

1

0
Bw

 

  1
0


i

Bw , where ‘i’ is the indices values satisfying the 

given condition, in this step it is {3} Therefore J1= {3} and 

n1=1(number of indexes in J1) 

Step (ii) 

10
JJ  and nn 

1
 

Step (iii) 

   
 
















11

11111
11

1

,

1

,1

nnJ

nnJJJJnJ

Iw

IBBIw

c

c

 

Where 
c

J
1

contains the complement indexes of 
1

J  i.e. 

 2,1
1


c
J  

Now 

  2.0
5

1

10

10

10

1
0

10

5
1

1

1
1


































J
w  

  










10

01

1
1

c
J

w  

Now return to step (i) of the algorithm, with k=k+1 i.e. 

k=2 

 

Iteration 2 

Step (i) 























2.0

1

1

1
w

; since  3
1
J therefore  

1
11

)3(
J

ww   

































































2.0

5.0

6

2.0

1

1

510

1511

05010

10

1

1
Bw  

  1
1


i

Bw , where ‘i’ is the indices values satisfying the 

given condition, in this step it is {2,3} Therefore 

 3,2
2
J  and 2

2
n (the number of indices in 

2
J  ) 

Step (ii) 

21
JJ   and nn 

2  
Step (iii) 

   
 
















22

22222
22

2

,

1

,2

nnJ

nnJJJJnJ

Iw

IBBIw

c

c

 

Where 
c

J
2

contains the complement indexes of 
2

J  i.e. 

 1
2


c
J  

No

    



























































0333.0

1666.0
1

0

10
1

51

151

10

1

10

01
1

2
2

J
w

   1
2

2
c

J
w  

Return to step (i) of the algorithm with k=k+1, i. e k=3 

 

Iteration 3 

Step (i) 























0333.0

1666.0

1

2
w

;  3,2
2
J therefore  

2
22

3

2

J
ww 















 

 
 

  1
2


i

Bw

  

where ‘i’ is the indices values satisfying the given 

condition, in this step, it is again {2, 3}
 

Therefore  3,2
3
J  and 2

3
n (the number of indices 

in 
3

J  ) 

Step (ii) 

32
JJ  ,  and nn 

3
 

In step (ii) of iteration 3, one of the conditions stated in 

step (ii) of the algorithm is satisfied. Therefore we will 

define 

 3,2
3
 JJ

B
 

2
3
 nn

B
 and 

2
ww

B
 , since nn

B
  

   























0333.0

1667.0

1

2
ww

B

 

Exit the loop. 

To calculate the value of P for the given A in numerical 

example , we will use MATLAB LMI tool box. The 

matrix P for given A in numerical example comes out to 

be  
 





























3273.104778.31064.0

4778.32761.43915.0

1064.03915.01085.0

P
 

Following the algorithm stated in VII, for the A given in 

numerical example we have  3,2
||


A
J  and  1

||


c

A
J . 

 Considering
|| A

J  ,
c

A
J

||
 and P, for the given A in numerical 

example, we will check whether Theorem 3 is satisfied, 

i.e. in our case. 
 

           




ij

c

AjijAii
JiallforPwP 10||

||,||,
       (5d) 

































































0333.0

1667.0

8333.1

0333.0

1666.0

1

510

1511

05010

10

1

2
Bw
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         
3,13||2,12||1,1

|||| PwPwP
AA



                             (0.1085)-(0.1667)*(|0.3915|)-(0.0333)*(|-0.1064|) = 

0.03969383 
 

Thus the value of (5d) comes out to be greater than zero. 

Hence the system considered in the numerical example is 

judged to be asymptotically stable according to Theorem 

3.The same can also be verified by plotting the state 

trajectories of the numerical example. The figure1 shows 

that the system under consideration is stable, as the next 

state of the system reaches zero with increasing iterations 

i.e. the output reaches zero with zero input condition.  

 

 
Fig.1   Dynamical behavior of the system considered in 

numerical example 

 

IX. CONCLUSION 

 

 The criteria for the global asymptotic stability of fixed-

point state-space digital filters with saturation nonlinearity 

have been given by several researchers. Theorem1 and 

Theorem 2 both fails in case of the system considered in 

the numerical example. But a finite procedure proposed by 

Ooba.T [7] ascertains the global asymptotic stability of the 

system considered in the numerical example. A little linear 

algebra [7] before searching for a Lyapunov solution is 

reasonably inexpensive way to broaden the scope of 

stability test from those of earlier results. 
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